
8

Accurate Multidimensional Poisson-Disk Sampling

MANUEL N. GAMITO

Lightwork Design Ltd.

and

STEVE C. MADDOCK

The University of Sheffield

We present an accurate and efficient method to generate samples based on a Poisson-disk distribution. This type of distribution, because of its blue noise
spectral properties, is useful for image sampling. It is also useful for multidimensional Monte Carlo integration and as part of a procedural object placement
function. Our method extends trivially from 2D to 3D or to any higher dimensional space. We demonstrate results for up to four dimensions, which are likely
to be the most useful for computer graphics applications. The method is accurate because it generates distributions with the same statistical properties of those
generated with the brute-force dart-throwing algorithm, the archetype against which all other Poisson-disk sampling methods are compared. The method is
efficient because it employs a spatial subdivision data structure that signals the regions of space where the insertion of new samples is allowed. The method
has O(N log N) time and space complexity relative to the total number of samples. The method generates maximal distributions in which no further samples
can be inserted at the completion of the algorithm. The method is only limited in the number of samples it can generate and the number of dimensions over
which it can work by the available physical memory.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation—Antialiasing; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture; I.4.1 [Image Processing and Computer Vision]: Digitization and Image Capture—Sampling

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Accurate Poisson-disk sampling, dart throwing, multidimensional sampling, maximal sampling, spatial subdivision

ACM Reference Format:

Gamito, M. N. and Maddock, S. C. 2009. Accurate multidimensional poisson-disk sampling. ACM Trans. Graph. 29, 1, Article 8 (December 2009), 19 pages.
DOI = 10.1145/1640443.1640451 http://doi.acm.org/10.1145/1640443.1640451

1. INTRODUCTION

Poisson-disk sampling is a process that distributes uniform ran-
dom samples on a domain of n-dimensional space based on a min-
imum distance criterium between samples. We propose an efficient
Poisson-disk sampling method that generates samples on the domain
D = [0, 1]n , consisting of a unit hypercube in n-dimensional space.
The outcome of the method is a set X = {xi ∈ D; i = 1, 2, · · · , N }
of N samples for which the sampling conditions can be expressed
as

∀xi ∈ X, ∀S ⊆ D : P(xi ∈ S) =
∫

S
dx, (1a)

∀xi , x j ∈ X : ‖xi − x j‖ � 2r, (1b)

where the parameter r is called the distribution radius.
Condition (1a) states that a uniformly distributed random sample

xi of X has a probability of falling inside a subset S of D that is
equal to the hypervolume of S. For example, if S ⊂ D is one half the

M. N. Gamito was supported by grant SFRH/BD/16249/2004 from the Fundação para a Ciência e a Tecnologia, Portugal.
Authors’ addresses: M. N. Gamito, Lightwork Design Ltd., Rutledge House, 78 Clarkehouse Road, Sheffield S10 2LJ, UK; email: manuel.gamito@
lightworkdesign.com; S. C. Maddock, Department of Computer Science, The University of Sheffield, Regent Court, 211 Portobello, Sheffield S1 4DP,
UK; email: s.maddock@dcs.shef.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, to redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2009 ACM 0730-0301/2009/12-ART8 $10.00 DOI 10.1145/1640443.1640451 http://doi.acm.org/ 10.1145/1640443.1640451

size of D then the probability of a new sample being placed inside
S is exactly one half. Condition (1a) already takes into account
the fact that

∫
D dx = 1 for the unit hypercube, irrespective of the

dimension n of the space. Condition (1b) enforces the minimum
distance constraint between any pair of samples.

A Poisson sampling process is one that enforces condition (1a)
alone. The reason for the name is because the number of samples
that falls inside any subset S ⊆ D obeys a discrete Poisson dis-
tribution [Snyder 1991]. Poisson sampling, although simple to im-
plement, is not favored in computer graphics because it leads to
sample distributions where the samples are noticeably grouped into
clusters of different sizes and densities. This “clumpiness” of Pois-
son distributions is a consequence of the samples being generated
independently so that any two samples can be arbitrarily close to
each other. It is better to have a sampling process that distributes
random samples in an even manner across D so that no clustering is
perceived. Condition (1b) helps to combat clustering by preventing
samples from being closer than some chosen value 2r .

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:2 • M. N. Gamito and S. C. Maddock

Fig. 1. Two-dimensional Poisson-disk sampling on the unit square. From left to right, the distribution radii are 0.025, 0.015, and 0.0075. The number of
samples is 294, 798, and 3 148, respectively. The time taken to generate the samples with our algorithm was 0.003s, 0.009s, and 0.041s, respectively.

Fig. 2. Three-dimensional Poisson-disk sampling on the unit cube. From left to right, the distribution radii are 0.025, 0.015, and 0.0075. The number of
samples is 6 457, 28 807, and 223 518, respectively. The time taken to generate the samples with our algorithm was 1.870s, 9.966s, and 86.391s, respectively.

The term Poisson-disk stems from the observation that samples in
two dimensions are located at the center of disks of radius r so that no
overlapping of disks occurs within the distribution. This is exempli-
fied in Figure 1, which shows three dense Poisson-disk distributions
for decreasing values of the r parameter. In three dimensions, the
same sampling process can be referred to as Poisson-sphere be-
cause samples now occupy the center of nonoverlapping spheres of
radius r , as Figure 2 exemplifies. For historical reasons, we keep the
name Poisson-disk irrespective of the dimensionality of the space.

There is some confusion in the computer graphics literature re-
garding the parameter r of a Poisson-disk distribution. Some authors
use r to label the minimum allowable distance between samples.
Other authors use it to label the distribution radius, that is, the ra-
dius of the Poisson disks or spheres. We employ the latter definition
with the understanding that it is equal to half the value of the former.

Poisson-disk sampling processes were first studied by the
Swedish statistician Bertil Matérn to describe the distribution of
trees in a forest [Matérn 1960; Ripley 1977]. He devised two pro-
cesses through which a distribution of Poisson-disk samples could
be generated. In particular, the Poisson-disk process that we are in-
terested in studying, known in computer graphics as dart-throwing,
is equivalent to the Matérn second process. In this process, samples

have a uniform random position and a uniform random birth time.
As time progresses, samples are accepted or rejected based on their
distance to the samples that have already been born. In the fields of
chemistry, statistical physics, and the physics of granular materials,
the Poisson-disk process is also known as the hard-core process and
is one instance of random sequential adsorption and of random close
packing [Baddeley and Møller 1989; Dickman et al. 1991; Jaeger
and Nagel 1992].

Although conditions (1a) and (1b) are enough to specify a valid
Poisson-disk distribution of samples, we are interested in an addi-
tional condition that characterizes a distribution as being maximal. A
maximal Poisson-disk distribution is one where it is not possible to
insert any further samples without violating the minimum distance
constraint. Specifically, a Poisson-disk distribution is maximal when
it verifies the condition

∀x ∈ D, ∃ xi ∈ X : ‖x − xi‖ < 2r. (2)

Condition (2) implies that there are no more available points in
the domain over which to place new samples. This is because every
domain point x is already at a distance smaller than 2r from at
least one sample in the distribution. Placing a new sample at x is
not possible as it would violate condition (1b). For this reason,

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:3

a maximal distribution can also be said to be jammed1. Maximal
Poisson-disk distributions are desirable because they maximize the
number of samples generated while, at the same time, eliminating
any space that remains unoccupied. Valid Poisson-disk distributions
that are not maximal may potentially have large gaps inside of them
devoid of samples. This makes sparse Poisson-disk distributions
comparable to the simpler Poisson distributions in that there may
be a noticeable clustering of samples.

We present an efficient method to generate large numbers of
samples in a n-dimensional space as the outcome of a maximal
Poisson-disk sampling process. Our method uses a subdivision tree
in n dimensions to help in the placement of samples and gener-
ates accurate Poisson-disk distributions. We begin in Section 2 by
discussing the applications of Poisson-disk sampling in computer
graphics. Section 3 then presents current methods for Poisson-disk
sample generation. Our method is explained in Section 4. A com-
parison of our method with previous methods is done in Section 5,
where results are also presented and discussed. Section 6 concludes
the article and proposes future developments. Appendix A gives a
proof of the correctness of our proposed algorithm for the genera-
tion of Poisson-disk samples with the desired statistics. Appendix B
details the routine for testing the intersection between a sample and
a node in the tree, represented by a hypercube.

2. POISSON-DISK SAMPLING FOR
COMPUTER GRAPHICS

Poisson-disk sampling was introduced to computer graphics by
Dippé and Wold [1985], who proposed it as a sampling technique for
image antialiasing. The reason why Poisson-disk sampling is ideal
for antialiasing is because of its blue noise spectral properties. A blue
noise spectrum is characterized by the absence of significant power
content in the low frequencies with the exception of a strong DC
spike at the origin. Based on results by Leneman [1966], it is possi-
ble to derive an analytic expression for the mean power spectrum of
a one-dimensional Poisson-disk process. Figure 3 shows this power
spectrum. The frequency response of a typical lowpass antialiasing
filter is also shown in Figure 3. The gap in the Poisson-disk spec-
trum for low frequencies (with a width that varies with the inverse
of the radius r) allows the antialiasing filter to recover the original
signal whose spectrum is centered around the DC spike. Copies of
the spectrum from the original signal are also spread along the high
frequencies by the Poisson-disk process in an uncorrelated manner.
The high-frequency content is attenuated by the frequency response
curve of the filter and shows up as a low-power high-frequency
noise. This type of noise is much less objectionable to the human
visual system than the coherent aliasing artifacts that would have
resulted if a deterministic sampling process had been used instead.
Research done by Yellot [1983] on the distribution of photoreceptor
cells in the retina of rhesus monkeys shows that it closely resembles
a Poisson-disk distribution for the areas outside the fovea. Such a
result helps to explain why visual perception is so forgiving of low-
power noise artifacts and, therefore, why Poisson-disk sampling is
useful for image sampling and antialiasing. The simpler Poisson
sampling, in contrast, presents a flat spectrum across all frequencies
and is not recommended for image sampling since it cannot separate

1We classify a distribution as jammed based on the ability to insert more
samples. In other fields, a different definition is used: a distribution of N
points is jammed when the disks or spheres around those points become
interlocked and cannot move.

0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

Spatial Frequency (1/px)

P
o
w

e
r

(d
B

)

Fig. 3. The average power spectrum of a one-dimensional Poisson-disk
process corresponds to a blue noise spectrum. The dotted line shows the
frequency response of a typical low-pass filter.

the low frequencies of the signal from the high frequencies of the
aliases.

Cook [1986] suggested that Poisson-disk sampling could be used
as part of a distributed raytracing algorithm, not only to perform
antialiasing but also to generate such effects as motion blur, depth
of field, smooth shadows, glossy reflection, and transparency. Un-
fortunately, methods for generating Poisson-disk distributions were
inefficient at the time and Cook relied instead on jittered sampling as
a less expensive alternative. Jittered sampling places samples at the
nodes of a uniform grid and perturbs their position by adding a small
random displacement. The spectral properties of a jittered sampling
distribution are not as good as those for Poisson-disk sampling,
with a low-frequency gap that is smaller and less well resolved. Re-
cently, Hachisuka et al. [2008] extended the results of Cook [1986]
by sampling directly in the multidimensional space of the render-
ing equation, instead of sampling in image space. The authors were
able to show that adaptively sampling in the parameter space of the
rendering equation leads to a reduction in noise and also a reduction
in the number of required samples.

The applications of Poisson-disk sampling to raytracing are in-
stances of multidimensional Monte Carlo integration. Monte Carlo
integration is also ubiquitous in global illumination where it is often
used to accumulate the contribution of incoming radiance over the
hemisphere above a surface point [Dutré et al. 2006]. The Monte
Carlo integration technique computes a numerical approximation
of an integral by accumulating the contributions of random samples
taken from the integrand function [Glassner 1995]. For greater accu-
racy, the samples are distributed according to a probability density
function that is proportional to the integrand function, in a process
known as importance sampling, so that areas where the integrand
takes on larger values are sampled at a higher density. Importance
sampling can be achieved by first generating a Poisson-disk dis-
tribution in a canonical hypercube [0, 1]n , for an n-dimensional
integral, and using the cumulative probability density function to
warp this hypercube into the domain of integration [Shirley 1992].
Ostromoukhov et al. [2004] and Kopf et al. [2006], however, have
shown that direct generation of a nonuniform distribution leads to
visually better results when compared with the domain warping

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:4 • M. N. Gamito and S. C. Maddock

Fig. 4. A procedural object distribution function used to generate a two-dimensional texture (left), a solid texture (middle), and both a solid texture and a
hypertexture (right).

method. A nonuniform Poisson-disk sampling can be formally de-
fined to obey conditions (1a) and (1b) with a variable radius so
that a sample placed at x ∈ D should have no samples closer than
2r (x) [Bartlett 1974]. Ostromoukhov et al. [2004] demonstrated the
application of nonuniform distributions to perform importance sam-
pling of environment maps while Kopf et al. [2006] used them to
perform image dithering in real time.

Graphical objects can be distributed in space based on a
Poisson-disk sampling. This has been used to distribute ink strokes
for nonphotorealistic rendering [Deussen et al. 2000; Secord et al.
2002] and it has also been used to create plant ecosystems by instanc-
ing multiple copies of a single plant object [Deussen et al. 1998; Co-
hen et al. 2003]. It is often important that copies of the original object
do not intersect. If the object can be bounded by a disk or a sphere
of radius r then a Poisson-disk distribution with the same radius
will not create interferences between the copies. Lagae and Dutré
[2005, 2006a] have proposed a procedural object placement func-
tion by creating an infinite nonperiodic distribution of Poisson-disk
samples on the plane. The same authors later extended their pro-
cedural object placement function to three dimensions [Lagae and
Dutré 2006b]. Figure 4 shows examples of procedural placement
of a radially symmetric primitive. More complex examples can in-
clude pseudorandom rotations and scalings that are applied when
instancing the primitive. Sample placement with Poisson-disk prop-
erties over two-dimensional manifolds is another possibility [Fu and
Zhou 2008; Lehtinen et al. 2008; Li et al. 2008; Cline et al. 2009].
A generalization of Poisson-disk sampling that uses elliptical sam-
ples instead of disks has been introduced to computer graphics by
Feng et al. [2008]. Poisson-disk sampling can also be used instead
of Poisson sampling when generating procedural noise functions
such as sparse convolution noise or cellular texture noise, leading to
a better distribution of the features in these noise functions [Lewis
1989; Worley 1996].

3. METHODS FOR POISSON-DISK SAMPLING

We present here an introduction to the methods that have been devel-
oped to generate Poisson-disk distributions. The reader is referred
to Lagae and Dutré [2008] for a more in-depth survey of these meth-
ods. We make a distinction between accurate methods, approximate
methods, and tile-based methods for Poisson-disk sampling. Ac-
curate methods obey conditions (1a) and (1b), generating correct
Poisson-disk distributions. Condition (1b), however, is generally
difficult to enforce and this has led to the development of approxi-
mate methods. These methods generate distributions that, although

not having true Poisson-disk properties, attempt to reach a blue
noise power spectrum with variable degrees of success. Tile-based
methods can generate distributions in real time by drawing from
a finite set of tiles containing carefully selected samples. In most
cases, tile-based methods use either accurate or approximate sam-
pling methods as part of a precomputation stage that populates their
initial tile set with samples. Special rules are used that prevent the
tilings from becoming periodic. Nevertheless, these methods gener-
ate a weak form of quasiperiodic tilings because each tile is copied
repeatedly across space. If the sampling space is displaced, sev-
eral copies of the tiles overlap. This quasiperiodicity becomes ap-
parent when periodograms of the distributions are computed. The
periodograms show many spikes due to the copies of a same tile
overlapping exactly in frequency space.

Tile-based Poisson-disk sampling methods are the fastest because
all samples have already been generated at runtime. The methods
simply select, for any given point in space, which tile should samples
be drawn from. Approximate methods have intermediate complex-
ity. They gain speed, relative to accurate methods, by relaxing one
or both of the Poisson-disk sampling conditions. Accurate methods
are the slowest since they are required to enforce exactly both con-
ditions for Poisson-disk sampling. Despite the existence of many
fast approximate and tile-based sampling algorithms, the need for
algorithms that can generate Poisson-disk distributions accurately
is still justified. The need to enforce the uniform probability dis-
tribution constraint (condition (1a)) is important for image filtering
operations and, more generally, for Monte Carlo integration. The
failure to verify this constraint has the potential of introducing bias
into the Monte Carlo integral. The need to enforce the minimum
distance constraint (condition (1b)) is important for procedural ob-
ject placement methods. Failure to verify this constraint could cause
some of the object instances to intersect.

3.1 Accurate Methods

Dart-throwing was the first method developed in computer graphics
for Poisson-disk sampling [Dippé and Wold 1985]. Random sam-
ples are continually tested and only those that satisfy the minimum
distance constraint relative to samples already in the distribution are
accepted. The main source of inefficiency of the method is a rejec-
tion sampling mechanism: a large number of samples is attempted
but only a small percentage of them are inserted into the distribu-
tion. The algorithm cannot guarantee that a maximal distribution
will be generated; as the allowable area for new insertions gradually
shrinks, the probability that attempted samples will fall inside this

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:5

area becomes progressively smaller. This also means that the algo-
rithm does not have a guaranteed termination. If too many samples
are requested, the algorithm can effectively become locked as it tries
to generate samples that fall into arbitrarily small areas of space.

For many years, dart-throwing was the only available method for
accurate Poisson-disk sampling. Its inefficiency led to the develop-
ment of approximate sampling algorithms. The situation changed
recently with the development of efficient dart-throwing methods.
These new methods take advantage of a spatial data structure to
guide in the placement of samples. The data structure encodes the
regions of space where the insertion of samples is allowed. This
avoids to a great extent the expensive procedure of having to blindly
test new samples by trial and error. Every time a sample is inserted
in the distribution, the spatial data structure is updated to remove the
portion of space occupied by the new sample. The spatially guided
methods, used in computer graphics, were developed specifically
for two-dimensional sample distributions and do not extend well to
higher dimensions.

The first spatially guided method was proposed by Jones [2006].
The method uses a Voronoi tessellation as the spatial data structure
with the samples at the centroids of the Voronoi cells. The Voronoi
cell of a sample is randomly selected and a new sample is inserted
in the available area of the cell that falls outside a circle of radius 2r
with the original sample at the center. A weighted binary tree helps
in the selection of samples, with the Voronoi cells as the leaves and
with the available areas of the Voronoi cells as the weights. This
ensures that sample placement is done with a uniform probability
distribution; the tree is randomly traversed top to bottom, with the
area weights giving the probability of selecting the left or right child
of each tree node. The placement of a new sample requires the com-
putation of the intersection between the Voronoi cell (a polygon)
and the circle of radius 2r , which can be reduced to four fundamen-
tal cases. A rejection sampling method cannot be avoided but the
probability of a new sample being accepted is much larger than the
probability of it being rejected. Although Voronoi tesselations can be
extended to three dimensions, placing a new sample in the available
area of a three-dimensional Voronoi cell requires the computation
of the intersection between the cell (a polytope) and a sphere of ra-
dius 2r . This is a more complex procedure than its two-dimensional
equivalent and cannot be reduced to a small number of simple cases.

Another spatially guided method was proposed by Dunbar and
Humphreys [2006]. It uses a spatial data structure that the authors
have termed “scalloped sector,” which is bounded by two arcs of
circles of different radii and centered at distinct points. The available
area around each sample can be represented as the disjoint union
of several scalloped sectors. Similar to the method by Jones [2006],
a weighted binary tree is used to select a scalloped sector for the
placement of a new sample, resulting in a spatial uniform probability
distribution. A rejection sampling strategy is avoided as sampling
inside a scalloped sector is always guaranteed to generate a valid
Poisson-disk sample. It is not known how the scalloped sector data
structure can be extended to three dimensions.

Yet another spatially guided method in two dimensions was pro-
posed by White et al. [2007]. Similar to our proposed method, a
quadtree is used to signal the allowable sample insertion space. An
auxiliary uniform grid stores neighboring information about sam-
ples and is used to check for minimum distance conflicts for every
new sample. The cells in the grid have lateral size 2r and all the
possibly conflicting samples of a newly inserted sample are found
by looking in the grid cell where the new sample falls plus the eight
surrounding cells. This method can easily be generalized to higher
dimensions but it does not scale well due to the need for a uniform
grid. The memory size of the grid is O(r−n) for n dimensions and

this can become intractable for small r . Our proposed method does
not require an auxiliary grid and scales better with increasing n or
decreasing r since a single subdivision tree data structure is used.

Accurate Poisson-disk distributions can also be generated with
a molecular dynamics simulation method [Lubachevsky and
Stillinger 1990]. A distribution of molecules in a gas is initialized
with random positions and velocities and the algorithm tracks the
elastic collisions that occur between molecules. At the same time,
the radius of the molecules is gradually increased, which also in-
creases the frequency of collisions. The algorithm must stop before
the rate of collisions begins to diverge, which occurs when a small
increase in molecule radius leads to a very large increase in the
number of collisions. This method can generate distributions with
a tight packing of samples and, given enough time, can even gen-
erate crystalline structures in two dimensions. The minimum dis-
tance constraint is always verified relative to the molecule radius
at the termination of the algorithm. Because the algorithm models
a gas in a state of equilibrium, all points in space have an equal
probability density for molecule placement. Molecular dynamics
can generate Poisson-disk distributions, provided the algorithm is
stopped before the molecules progress significantly towards a deter-
ministic hexagonal packing that corresponds to the tightest possible
distribution (refer to the concept of relative radius, explained in
Section 4.6). The generation of maximal distributions is not guar-
anteed because the number of molecules is kept constant and, as they
move, empty spaces may appear inside the domain. The molecular
dynamics method has been extended to three and higher dimensions
and also to ellipsoidal shapes [Lubachevsky et al. 1991; Donev et al.
2005; Skoge et al. 2006]. The formation of crystalline structures has
only been verified in the two-dimensional case, however.

3.2 Approximate Methods

In the category of approximate sampling methods, there is the al-
ready mentioned jittered sampling [Cook 1986]. A similar jittering
technique that perturbs samples away from the nodes of a hexago-
nal grid is also possible [Glassner 1995]. Error diffusion algorithms
that were originally developed for image dithering can be applied
to generate approximate Poisson-disk distributions [Mitchell 1987;
Ulichney 1988].

Two popular algorithms were devised to overcome the defi-
ciencies of the original dart-throwing algorithm. Glassner [1995]
calls them the “best candidate algorithm,” by Mitchell [1991], and
the “decreasing radius algorithm,” by McCool and Fiume [1992].
These algorithms have the interesting property of generating hier-
archical streams of samples. If the sample sequence {x1, . . . , xi }
is approximately Poisson-disk with radius ri , the larger sequence
{x1, . . . , xi+1} is also approximately Poisson-disk with radius ri+1 <
ri , up to a maximum sequence {x1, . . . , xN }. These hierarchical
streams are attractive because they allow several Poisson-disk dis-
tributions with different radii to be generated from a single run of
the algorithm.

The best candidate algorithm works by trying mi samples when
placing the i th new sample, where m is a supplied parameter. From
all mi samples attempted, the one that is farther away from all
previous i − 1 samples is chosen. The algorithm does its best to
place samples well away from each other but it does not enforce any
particular distribution radius r . There is the probability, however
small, that a sequence of unfavorable sampling outcomes will make
the best candidate sample be arbitrarily close to some other previous
sample.

The decreasing radius algorithm, as the name implies, slowly de-
creases the radius ri of the distribution at each iteration i until the

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:6 • M. N. Gamito and S. C. Maddock

final desired radius r is reached or a desired number of samples is
generated. For each intermediate radius, it makes a finite number of
attempts to place new samples, proportional to i , before proceeding
to the next smaller radius. What makes the decreasing radius algo-
rithm an approximate Poisson-disk sampling method is that it uses
radii that are larger than r for most of the iterations. This violates
condition (1a) because, for iteration i , the probability of placing a
new sample at a distance of between 2r and 2ri relative to a previ-
ous sample is zero. In fact, this probability should be proportional
to the area of the annulus around the previous sample with inner and
outer radii of 2r and 2ri , respectively, not considering the presence
of other nearby samples that may reduce this allowable area.

Dunbar and Humphreys [2006] give a fast O(N) method that
results from collapsing their scalloped sector data structure into a
single arc of a circle with radius 2r . With this transformation, every
new sample is always placed at a distance of exactly 2r from some
other previous sample. This signifies that condition (1a) cannot be
enforced since samples are not free to be placed anywhere in space
with equal probability.

Bridson [2007] proposed a multidimensional sampling method
that subdivides the domain into a uniform grid for easier neighbor
sample checking, similar to White et al. [2007]. An active list of
samples is kept. At each iteration, a sample from the active list is
randomly chosen and several dart-throwing attempts try to insert
a new sample inside a hypersphere of radius 4r centered on the
chosen sample. The new sample is added to the grid and to the active
list while the previously chosen sample is removed from the list if
dart-throwing did not succeed after some number k of attempts. The
method does not distribute samples uniformly because every new
sample is always placed inside a hyperspherical neighborhood of
some previous sample.

Wei [2008] proposed a parallel sampling method that can run on
a GPU. The method uses a multiresolution strategy where uniform
subdivisions of the domain with increasing resolution are considered
one at a time. The cells in each resolution level are then arranged into
distinct cell groups in such a way that the insertion of new samples
inside each group cell can proceed independently from the insertion
of samples in the other cells of the same group. This allows sample
insertion to be parallelized for each of the groups of any resolution
level. Sample insertion is done by making k dart-throwing attempts
inside every group cell. Although the sampling inside each group
is random, the sequence of groups visited for every resolution level
follows a predetermined order. This violates the uniform sampling
condition because samples inside a group cannot be placed until all
previous groups at the same resolution level have been sampled. A
more detailed analysis about this parallel sampling method can be
found in Appendix A.

3.3 Tile-Based Methods

The first tile-based Poisson-disk sampling methods used Wang tiles
and were proposed by Hiller et al. [2001] and Cohen et al. [2003].
Wang tiles have colors assigned to their edges in specific ways. A
Wang tile can only be placed next to another if they share the same
color along the common edge. This allows nonperiodic tilings of the
plane to be created. The generation of Poisson-disk samples inside
each tile must respect the minimum distance constraint across the
edges of the tile relative to all other tiles that share the same edge
color. The authors achieve this by using several steps of Voronoi
relaxation [Lloyd 1982].

In the initial Wang tile methods, the tiling had to be computed
in advance inside some finite region of space. Lagae and Dutré
[2005] introduced procedural tiling rules that allow a Wang tile to

be assigned on-the-fly in a consistent way to any arbitrary point
in space. This leads to the creation of infinite nonperiodic tilings
of Poisson-disk samples. Lagae and Dutré [2006a] later introduced
procedural tiling rules for corner tiles. Corner tiles have colors as-
sociated to their corners instead of their edges. They can enforce the
minimum distance constraint across tiles that share a common cor-
ner. The same authors also extended corner tiles to three dimensions,
creating corner cubes [Lagae and Dutré 2006b].

Methods for nonuniform Poisson-disk sampling have been pro-
posed based on tile distributions. Kopf et al. [2006] apply subdi-
vision rules to Wang tiles in order to create sample distributions
with varying density across space. Similar subdivision rules can be
applied to Penrose tiles or polyominoes [Ostromoukhov et al. 2004;
Ostromoukhov 2007b]. Each Penrose tile or polyomino has a sin-
gle sample inside, which is subject to a Voronoi relaxation together
with the samples from other tiles or polyominoes to reduce sam-
pling artifacts. The parallel sampling method of Wei [2008] can
also accommodate nonuniform distributions with the help of a sub-
division tree that refines regions of the domain more than others.
The generation of nonuniform low-discrepancy sequences of sam-
ples can be done with dodecagonal nonperiodic tilings of the plane
[Ostromoukhov 2007a]. Low-discrepancy sequences are different
from Poisson-disk distributions in that they are deterministic. They
can, however, fill the plane without creating noticeable artifacts.

4. POISSON-DISK SAMPLING BY
SUBDIVISION REFINEMENT

Our method for Poisson-disk sampling performs a subdivision re-
finement of the allowable space for the insertion of new samples. It
can be used in all applications of Poisson-disk sampling that were
discussed in Section 2, with the exception of the direct generation
of nonuniform distributions. In the case of the tile-based methods
of Section 3.3, it can be used to pregenerate the distributions for the
tiles. The method only requires the specification of the distribution
radius 0 < r �

√
n/2 as a starting parameter. Given that samples are

generated inside the unit hypercube [0, 1]n , values r >
√

n/2 can be
supplied to the algorithm but have no practical interest since they are
certain to lead to distributions with only one sample. Unlike some
of the previous methods, we do not enforce a maximum number of
samples to be generated. Samples keep being inserted until there is
no more allowable space for new ones and the distribution becomes
jammed. There is, however, the option of specifying a desired num-
ber N of samples. The algorithm will attempt to reach a number of
samples as close as possible to N while still generating a maximal
distribution. As with all other Poisson-disk sampling methods, it is
possible to perform a Voronoi relaxation at the completion of the
algorithm to further smooth the distribution of samples.

In what follows, we will often explain the algorithm in its
two-dimensional version for increased clarity of presentation. The
extension to three or higher dimensions is straightforward. The sam-
ples, in particular, will be represented as disks of radius 2r instead
of the r half-disks that were shown in Figure 1. The larger disks,
shown in Figure 5(a), are now intersecting but a property still holds
that no disk contains any sample other than the sample at its center.
The same disks are gray shaded in Figure 5(b). The white areas in
this image represent the empty space where new samples can be
inserted. Once the unit square becomes uniformly colored in gray,
the distribution is jammed.

A spatial subdivision data structure is used to mark the allowable
insertion space. In two dimensions, this data structure is a quadtree
and in three dimensions it is an octree [Samet 1990]. The same type
of data structure can be easily extended to higher dimensions. The

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:7

(a) disk perimeters

(b) disk areas

Fig. 5. The top image shows an incomplete Poisson-disk distribution visu-
alized with disks of radius 2r . The bottom image shows the same distribution
with gray shaded disks. New samples can be inserted in the white areas.

main algorithm is shown as pseudocode in Figure 6(a). The routine
Generate and Update, invoked by the main algorithm, will be fur-
ther explained in the following sections. The algorithm is initialized
by placing a root node with dimensions [0, 1] × [0, 1] in the tree at
subdivision level 0. For purposes of sample generation, leaf nodes
in the tree can be classified as candidates or as potential candidates.
A leaf node is a candidate if it is not intersected by the disks of
any previously inserted samples, otherwise it is a potential candi-
date. Figure 6(b) shows an example of a distribution where the node
on the top right is a candidate node. Nodes that have already been
pruned from the quadtree are shaded in gray; these are nodes that
are completely inside the disk of one of the samples and which can
be discarded. All the remaining leaf nodes in the tree are potential
candidates.

At each iteration, a leaf node is selected by randomly traversing
the tree in top-to-bottom fashion. Similar to the methods by Jones

initialise tree with hypercube [0, 1]n;

while tree not empty

Generate random sample inside tree;

if sample is valid

Update tree with sample;
output sample;

(a) pseudocode

s2 (b) example

Fig. 6. The main algorithm on top for Poisson-disk sample generation.
The diagram at the bottom shows an example. The gray shaded nodes have
already been pruned from the tree. The top right node is a candidate node.
All the other nodes that intersect with disks are potential candidates.

[2006] and Dunbar and Humphreys [2006], the area beneath each
node in the tree is used to derive the probabilities of choosing one
of the child nodes of any given node. This strategy enforces the
constraint that samples must be chosen with a uniform spatial prob-
ability density. Once a leaf node has been selected, a random sample
is generated inside of it. The validity of the sample is then checked
by finding its distance to neighboring samples. Every leaf node in
the quadtree keeps a list of the samples whose disks intersect with
it. If the sample list for a leaf node is empty then it is a candidate
node, otherwise it is a potential candidate node. To find if a newly
generated sample is valid, therefore, it is only necessary to find its
distance to the samples that are kept in the list of the selected leaf
node.

If the newly generated sample is found to be valid then it is
accepted into the distribution and the tree is updated, to account
for the presence of the new sample, by invoking the tree Update
routine. If, on the other hand, the new sample is found to be invalid
then it must be rejected. The leaf node inside of which the attempted
sample was generated is subdivided, as part of the same Generate
routine that also generates the sample, and the areas of all nodes
in the tree are updated to account for this subdivision. Unlike the
original dart-throwing algorithm where a rejected sample represents
a wasted computational effort, our algorithm continually improves
the accuracy of the quadtree through node subdivision even when
samples are rejected. After each iteration, the area represented by
the quadtree either remains constant or decreases. The decrease in
area is caused by the pruning of nodes from the tree, which happens
when either new samples are inserted or leaf nodes are subdivided.
The algorithm terminates when the quadtree becomes empty and its
area becomes zero, signifying that a maximal distribution has been
achieved.

A maximum-subdivision-level condition is important to prevent
the algorithm from becoming locked in an infinite loop in situations

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:8 • M. N. Gamito and S. C. Maddock

Fig. 7. Three or more disks intersecting at a common point cause a situation
where a node is subdivided indefinitely. A maximum subdivision level must
be applied to force the algorithm to terminate.

where three or more disks are intersecting at the same point. Figure 7
illustrates this scenario. Although the node shown in this figure is
covered by the disks, none of the three disks by themselves provides
a complete coverage. The node is deemed to be subdivided and the
same problem is going to occur for all the descendants that contain
the point of intersection of the disks. The consequences of enforcing
a maximum level of subdivision can be formalized by stating that the
algorithm generates distributions obeying the following condition.

∃ε > 0, ∀x ∈ D, ∃xi ∈ X : ‖x − xi‖ < 2r + ε

with ε = O(2−lMAX) (3)

The constant ε is arbitrarily small and is related to the size of the leaf
nodes at the maximum level of subdivision lMAX. By increasing this
maximum level, ε converges to zero, in which case condition (3)
converges to the condition (2) of a maximal distribution. Given that
the probability of three disks intersecting at the same point is very
low, the specification of a sufficiently large maximum subdivision
level causes the proposed algorithm to generate maximal distribu-
tions almost always except in rare cases where empty areas of small
size may remain in the distribution.

4.1 Generating Samples in the Tree

The generation of new samples inside the tree is shown as pseu-
docode in Figure 8(a). The routine Generate is recursive and ac-
cepts as arguments a current node in the tree, a reference variable
selsample, where the generated sample is returned, and the current
subdivision level l. The routine also returns, as part of each recur-
sive invocation, the total area δ of the nodes that have been pruned
beneath the current node as a result of subdivisions that may have
occurred. The area δ is used to control the pruning of further nodes
higher in the hierarchy as the recursive call stack is unwound. A
node is discarded when the total area of all pruned nodes beneath it
is equal to its own area. The routine is initially invoked on the root
node of the tree. The reference variable selsample is initialized with
a null sample.

If the current node is a leaf, the Generate routine attempts to
place a uniform random sample inside of it. The routine finds if the
sample is valid by checking it against all the neighboring samples
that are stored in the list of samples for the leaf node. If the sample
is valid, the routine places it in the selsample reference variable and
returns an area of zero since no subdivision occurred and hence no
pruning took place. If the sample is invalid then the routine subdi-
vides the current leaf node and returns the area that may have been
pruned from the tree as a result of the subdivision. If, however, the
maximum subdivision level lMAX has been reached, the routine does

Generate(node. selsample, l)

if node is a leaf

place random sample in node;

if sample is not valid

if l < lMAX

return Subdivide(node);
else

return area of node;

else

let selsample = sample;
return 0;

let child of node be randomly chosen;
let δ = Generate(child, selsample, l + 1);

if δ < area of child
decrement area of child by δ;

else
discard child from the tree;

return δ;

(a) pseudocode

(b) example

Fig. 8. The Generate algorithm. The diagram at the bottom shows an
example. Initially, there are three partial candidates and one pruned node.
The node on the lower right, shown with medium thickness, is randomly
selected with a 3 : 1 probability. If a uniform random sample is placed on
the top left of the chosen node, inside the disk of the previous sample, the
node is subdivided. In a subsequent iteration, the child shown with maximum
thickness is randomly selected with a 4 : 1 probability. Since it is a candidate
node, any random sample generated inside of it is guaranteed to be valid.

not perform any further subdivision and simply returns the total area
of the leaf node. This return value will cause the node to be discarded
when control returns to the next higher invocation of the Generate
routine on the call stack. It is at this point that the possibility exists
that small unoccupied areas in the domain may be incorrectly dis-
carded when they could still receive a new sample. As expressed by
Eq. (3), the probability of incurring such a sampling error can be
made arbitrarily small by making the maximum subdivision level
lMAX arbitrarily high.

A child of the current node is randomly chosen using the areas
of all the children to derive the probabilities of the discrete random
event. If a node i has m children with areas a j , j = 1, . . . , m, the
probability of child j being chosen is a j/ai , where ai = ∑m

j=1 a j
is the area of the parent node. A child is chosen when the current
node is not a leaf. The Generate routine is then recursively invoked

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:9

on the chosen child node. The rest of the routine deals with some
book-keeping procedures to manage the areas of the nodes. If the
value δ returned from the invocation of Generate on a child node is
less than the area of the child, then this area is simply decremented
to reflect the removal of some of the descendant nodes. Through the
recursive invocation of Generate, the same value δ is also decre-
mented from all the ascendants of the chosen child node. If, on the
other hand, δ is equal to the area of the child node then the child is
pruned from the tree. As δ is returned through the unwinding call
stack, other ascendants of the child node may also be pruned from
the tree.

4.2 Subdividing Nodes in the Tree

The pseudocode for the Subdivide routine is shown in Figure 9(a).
This routine is invoked from withinGenerate and receives a node in
the tree as its argument. It returns the area δ of the children that may
have been discarded after subdivision. Every child of a subdivided
node must be compared against the samples that have already been
inserted in the distribution. The children of a node only need to be
compared against the samples contained in the node’s list. These are
the only samples in the whole distribution that can possibly interact
with the children for that node. If a sample has a disk that intersects
with a child node, that sample is added to the list of samples of
the child node. If, on the other hand, a sample’s disk completely
contains the child node, that child node can be discarded and the
value of δ incremented correspondingly.

The tests for intersection or containment between a node and a
disk is based upon the sphere-box intersection test first proposed by
Arvo [1990] and recently improved by Larsson et al. [2007]. More
details about our intersection test are given in Appendix B. This
intersection test works for any number of dimensions. Each child
is finally appended to the tree below the current node unless it was
previously found to be contained inside the disk of one of the node’s
samples. At the end of the Subdivide routine, the parent’s list of
samples is no longer necessary and is discarded to free up memory.
The total value for δ is also returned.

4.3 Updating the Tree with New Samples

The state of the tree needs to be updated whenever a new sample
is inserted in the distribution. This is done by traversing the tree
depth-first in recursive fashion. The recursive routine Update is
shown in Figure 10(a). It accepts a current node in the tree as an
argument, together with the sample that has just been inserted. The
routine also returns, as part of each recursive invocation, the total
area δ of the nodes that have been pruned beneath the current node.
The routine is first invoked for the node at the top of the tree. The
routine checks the node against the disk of the sample. If the node is
completely outside the disk, an early return is made and no pruning
occurs. If the node is completely inside the disk then it is pruned
together with all its descendants. The area of the node is returned
since it corresponds to the area that has been removed from the
tree. If neither of these conditions is verified, the node must be
intersecting the disk of the new sample. In this case, if the node
is a leaf, the new sample is appended to the node’s list of samples,
otherwise all the node’s children are checked in turn against the new
sample.
Update implements the same book-keeping procedures for the

areas of the nodes that the Generate routine already implemented.
If the pruned area δ returned from a recursive Update call to a child
is the same as the area of the child, then the latter is removed from
the tree, otherwise the area of the child is decremented by δ. The

Subdivide(node)

let δ = 0;
generate children of node;

for each child
for each sample in node’s list of samples

if child is intersected by sample’s disk
add sample to child’s list of samples;

else if child is contained in sample’s disk
discard child;
increment δ by area of child;
break from inner loop;

if child has not been discarded
add child to tree below node;

discard node’s list of samples;
return δ;

(a) pseudocode

s1s2

s and s1 2

s1s1

(b) example

Fig. 9. The Subdivide algorithm. The diagram at the bottom shows an
example for a parent node that intersects samples s1 and s2. The gray shaded
node is discarded. The small boxes for each leaf node indicate which samples
intersect that node.

areas pruned from all children of the current node are accumulated
in � and returned to higher nodes.

4.4 Time and Space Complexity

The procedures Generate, Subdivide, and Update have different
time complexities. The subdivision of a node in the tree is done in
constant time, owing to the list of samples that is kept in the node.
This list obviates the need for an exhaustive comparison between
the child nodes and every sample in the distribution. Sampling the
tree takes logarithmic time since the tree needs to be traversed all
the way down to a leaf node. Updating the tree with an accepted
sample also takes logarithmic time since a recursive tree traversal is
required. These two logarithmic times are dominant in the algorithm
since node subdivision is invoked from within the sample generation
procedure. As a consequence, for a distribution with N samples, the
total time complexity is O(N log N). The space complexity is also
O(N log N) since a subdivision tree is used.

4.5 Optional Generation of Periodic Distributions

It is sometimes desirable to have a n-dimensional distribution that
is n-periodic. This allows the hypercube to wrap around along all
of its dimensions. This also allows a simple tiling scheme where

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:10 • M. N. Gamito and S. C. Maddock

Update(node, sample)

if node is outside sample’s disk
return 0;

if node is inside sample’s disk
prune node and all its descendants
return area of node;

if node is a leaf
append sample to node’s list of samples
return 0;

let Δ = 0;
forall children of node

let δ = Update(child, sample);

if δ < area of child
decrement area of child by δ;

else
discard child from the tree;

increment Δ by δ;

return Δ;

(a) pseudocode

s

s

ss

s

(b) example

Fig. 10. The Update algorithm. The diagram at the bottom shows an ex-
ample for the insertion of a new sample s. The gray shaded nodes are pruned
from the tree as a result of the insertion. Leaf nodes that intersect with the
new sample are marked with a small box.

copies of the hypercube are placed side by side to create an infinite
periodic tiling that is still a valid Poisson-disk distribution. Periodic
tilings are not very interesting because they introduce noticeable
repeating patterns but n-periodic distributions are still useful in that
they avoid the boundary artifacts that occur with nonperiodic dis-
tributions. In the original nonperiodic case, the boundaries of the
unit hypercube act as constraints, implying that the probability of
a sample being placed outside the hypercube is always zero. This
subtle deviation from a uniform probability sampling scheme causes
samples to cluster more densely close to the boundaries, trying to
use all the available space that is left there.

The enforcement of periodic boundary conditions can be obtained
by introducing a small modification in the main algorithm shown in
Figure 6. If we define the discrete set � = {−1, 0, +1}, it is possible
to write the following.

for every displacement vector σ ∈ �n

Update tree with sample s + σ ;

This pseudocode fragment replaces the single invocation of the
Update procedure in the algorithm of Figure 6. The generation
of periodic distributions is more expensive since 3n invocations of
the Update procedure are required per iteration. Many of these
invocations terminate early, however, in the cases where the disk of
the offset sample s + σ does not intersect with the unit hypercube
at the root of the tree.

4.6 Specifying the Desired Number of Samples

There are three different ways of supplying initial parameters to a
Poisson-disk sampling algorithm. The basic parameters are the dis-
tribution radius r and the total number of samples N that is desired.
One can start a Poisson-disk sampling algorithm by specifying r
or N or both in conjunction. The specification of r is used when
exact control over the distance between samples is required. The
specification of N usually leads to sample distributions that are not
maximal, as it is difficult to control the sampling process so that it
becomes jammed exactly after the N th sample has been inserted.
The radius r is the starting parameter for the proposed sampling
algorithm in order to generate maximal distributions where the to-
tal number of samples is not constrained. It is possible, however,
to specify a value of r so that the resulting distribution is maximal
and the total number of samples generated is approximately equal
to some desired number N .

Lagae and Dutré [2005] unified the parameters r and N by
introducing the concept of relative radius. The packing density
γn ∈ (0, 1) of a N sample distribution is the percentage of n-space
that is occupied by the hyperspheres of radius r centered around the
samples. For a unit hypercube, the packing density is

γn = N Vn(r), (4)

where Vn(r) = πn/2rn/	(n/2+1) is the volume of a n-dimensional
hypersphere of radius r and 	 is the gamma function. A distribu-
tion has a maximum packing density when the samples are placed
deterministically according to a crystalline grid. In two dimensions,
for example, this grid is hexagonal. The maximum packing densities
γnMAX have been determined for dimensions up to n = 8 [Weisstein].
If a distribution with a fixed number N of samples is desired, the
maximum possible radius will occur when the hyperspheres occupy
the densest possible configuration. For samples generated inside the
unit hypercube, the maximum distribution radius is then

rMAX =
n

√√√√γnMAX

N

	
(n

2
+ 1

)
πn/2

. (5)

The relative radius of the distribution is a parameter ρn ∈ [0, 1]
such that the absolute radius becomes r = ρn rMAX. When ρn = 0
is specified, no distance constraints are enforced and a Poisson dis-
tribution with N samples is generated. When ρn = 1 is specified,
a deterministic placement of N samples is achieved, having the
highest possible packing density. It must be remarked, however,
that no random sample placement algorithm can attain this result.
Poisson-disk sampling algorithms can only generate N samples ex-
actly for relative radii that don’t significantly exceed 0.8. For larger
values of ρn , the probability increases of the distribution becoming
jammed before N samples can be inserted. The case ρn = 1, in
particular, is always guaranteed to generate maximal distributions
with a number of samples that is smaller than N .

Table I shows the average packing densities γn , obtained with the
proposed algorithm in two, three, and four dimensions, and com-
pares them with the maximum packing densities γnMAX , evaluated
with known formulae [Weisstein]. Each average packing density was

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:11

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

50

100

150

200

250

Desired Number of Samples

R
e
la

ti
ve

 E
rr

o
r

(%
)

2D

3D

4D

(a) nonperiodic BCs

10
1

10
2

10
3

10
4

10
5

10
6

10
7−15

−10

−5

0

5

10

15

Desired Number of Samples

R
e
la

ti
ve

 E
rr

o
r

(%
)

2D

3D

4D

(b) periodic BCs

10
1

10
2

10
3

10
4

10
5

10
6

10
7

−15

−10

−5

0

5

10

15

Desired Number of Samples

R
e
la

ti
ve

 E
rr

o
r

(%
)

2D

3D

4D

(c) corrected nonperiodic BCs

Fig. 11. The relative error between the total number of samples generated N ′ and the desired number of samples N .

Table I. Average Packing Density, the Maximum
Packing Density and the Relative Radius in

Several Dimensions
n γn γnMAX ρn

2 0.5470 0.9069 0.7766
3 0.3841 0.7405 0.8035
4 0.2599 0.6169 0.8057

obtained from Eq. (4) by averaging N over 100 runs of the algorithm
for a given value of r . The radius r was chosen so as to generate the
maximum possible number of samples per run, given the hardware’s
memory constraints, providing, therefore, a good level of accuracy.
Periodic boundary conditions were enforced to prevent boundary
effects from contaminating the results. The average packing densi-
ties are close to half of their maximum possible values, signifying
that there is still a significant degree of randomness in the generated
distributions. Given these average packing densities, a distribution
with N samples can be generated with the following distribution
radius.

r =
n

√√√√γn

N

	
(n

2
+ 1

)
π n/2

(6)

The radius r from Eq. (6) amounts to a relative radius that results
from dividing Eq. (6) by Eq. (5), leading to ρn = (γn/γnMAX)1/n . The
relative radii are also shown in Table I. They are within the region
for which the sampling algorithm is able to generate maximal distri-
butions without becoming jammed before a number N of samples
is reached. The radius obtained with Eq. (6) is then supplied as the
starting parameter to the proposed algorithm, given some desired
number N .

Figure 11 shows the relative error e = (N ′ − N)/N , in two, three,
and four dimensions, between the number of samples generated N ′

and the desired number of samples N after the radius (6) has been
used. Graphs are shown for the algorithm without (Figure 11(a))
and with (Figure 11(b)) periodic boundary conditions. The bound-
ary effects that are present when periodicity is not enforced cause
an increase in sample density around the boundaries of the hyper-
cube and this, in turn, causes the packing densities to deviate from
the values shown in Table I. The final consequence is that Eq. (6)
becomes less accurate at controlling the number of generated sam-
ples, as the graph of Figure 11(a) shows. The error of Eq. (6), in
this case, decreases with increasing N , and, correspondingly, with

Table II. Parameters for the Error in the
Number of Samples Due to the Presence

of Boundary Effects
n α β

2 1.0997 −0.4999
3 2.2119 −0.3538
4 4.1114 −0.3056

decreasing r , because the boundary effect is manifested over a pro-
gressively smaller boundary region. In the case where periodicity is
enforced, the graph of Figure 11(b) shows good agreement between
the desired number of samples and the number of samples actually
generated.

The error due to the presence of boundary effects, shown in
Figure 11(a), can be represented on average in the form e = αN β .
A logarithmic regression was used to estimate the parameters α and
β, which are shown in Table II for two, three, and four dimensions.
Starting from the definition of the relative error e and rearranging
terms, one obtains

N ′ = N + αN β+1. (7)

This equation can be used to correct for the presence of boundary
effects in the nonperiodic case. The desired number of samples is
supplied as the value for N ′ and the equation is solved for N < N ′.
The value of N is then used in Eq. (6) to obtain the distribution
radius. Because Eq. (7) is nonlinear for N , it must be solved with
numerical methods. A Newton-Raphson root finder is used, starting
with N = 1.0, which only requires a few iterations to achieve good
accuracy [Press et al. 1992]. Figure 11(c) shows the relative error
after the value N has been internally corrected to account for the
boundary effects. The error is now similar to the error generated with
periodic boundary conditions, quickly decreasing as the number of
samples increases.

5. RESULTS AND DISCUSSION

We compare our method against previous methods for the generation
of accurate Poisson-disk sample distributions in two dimensions.
The methods used for comparison are:

—the molecular dynamics algorithm by Skoge et al. [2006];
—the Voronoi decomposition algorithm by Jones [2006];
—the accurate scalloped sector algorithm by Dunbar and

Humphreys [2006];

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:12 • M. N. Gamito and S. C. Maddock

Table III. Timing Results in Seconds for Several
Poisson-Disk Sampling Algorithms (in two
dimensions with wall boundary conditions)

N
Algorithm 1 000 10 000 100 000
Skoge (accurate) 0.760s 10.521s 481.916s
Jones (accurate) 0.245s 2.563s 27.140s
Gamito (accurate) 0.013s 0.157s 1.938s

—the approximate scalloped sector algorithm by Dunbar and
Humphreys [2006]2.

When performing the comparison, we generate maximal distri-
butions with all the methods except for the molecular dynamics al-
gorithm that cannot generally produce such distributions. Although
the dart-throwing algorithm of Dippé and Wold [1985] is the basis
for all spatially guided accurate Poisson-disk sampling algorithms,
it cannot be used for comparison purposes because it does not have
a guaranteed termination time when maximal distributions are gen-
erated. The sourcecode for the algorithms used in the comparison
has been made publicly available by their respective authors. We
would have liked to include the method by White et al. [2007] in the
comparison, as it also generates accurate and maximal distributions,
but it was not possible to obtain the sourcecode from the authors.
From the results presented in their paper, the method of White et al.
[2007] is likely to be currently the fastest accurate method in two
dimensions. The approximate sampling algorithm by Dunbar and
Humphreys [2006] is included in the comparison to provide an idea
of the speedups that can be achieved when one or both of the condi-
tions for Poisson-disk sample generation are relaxed. For simplicity,
we henceforth refer to the algorithms by the name of their respective
first authors.

Table III compares timing results between the proposed algorithm
and the algorithms by Jones and by Skoge for the computation of
two-dimensional distributions with N samples. For the algorithm
by Jones [2006], the timings for the desired number N of samples
were achieved by trying several values of the distribution radius r .
The timing results were then extrapolated from the actual number
of samples in the distribution (when sufficiently close to N) to the
desired value for N . In the case of the algorithm by Skoge et al.
[2006], the number N of molecules was specified as an input pa-
rameter while all the other parameters, such as the growth rate of
the molecular radius, were left at their default values as given in
the sourcecode. The simulations were stopped once the radii given
by Eq. (6) were reached, preventing the molecules from progressing
towards deterministic distributions. The resulting distributions were
visualized and it was verified that they were not maximal. In the case
of our proposed algorithm, the technique described in Section 4.6
was used to generate distributions close to the desired number of
samples, followed by extrapolation. The number of samples gen-
erated was 1 001, 10 025, and 100 047, respectively. The timings
were obtained on a dual AMD Athlon MP2600 2.1 GHz machine
with 4Gb of main memory. The molecular dynamics algorithm has
the ability to minimize the space between the disks, creating almost
hexagonal packings. The other algorithms can only approach the
same result with the use of Voronoi relaxation [Lloyd 1982]. The

2Dunbar and Humphreys actually proposed three algorithms in their paper:
one accurate algorithm with O(N log N) complexity and two approximate
algorithms with O(N) complexity. The algorithm that results from collapsing
scalloped sectors into arcs of a circle is the fastest of the two approximate
algorithms and is the one we use for the purpose of comparison.

Table IV. Timing Results in Seconds for Several
Poisson-Disk Sampling Algorithms (in two dimensions

with n-periodic boundary conditions)
N

Algorithm 1 000 10 000 100 000
Skoge (accurate) 0.763s 10.854s 427.585s
Dunbar (accurate) 0.491s 4.884s 47.874s
Gamito (accurate) 0.014s 0.162s 1.984s
Dunbar (approximate) 0.005s 0.052s 0.521s

molecular dynamics simulations, however, do not scale well with
increasing N and this becomes worse for higher dimensions.

Table IV compares timing results similar to those of Table III
but using n-periodic boundary conditions instead. The algorithms
by Dunbar and Humphreys [2006] are only included in this com-
parison because they employ a toroidal mapping in two dimensions
that corresponds to enforcing a periodicity condition. For the oppo-
site reason, the algorithm by Jones [2006] is not included because
the Voronoi decomposition part of the algorithm does not enforce
periodicity. The approximate sampling algorithm by Dunbar and
Humphreys [2006] is orders of magnitude faster than all the oth-
ers while our own algorithm, based on subdivision refinement, is
the fastest of all the accurate sampling algorithms that were com-
pared. Comparing Tables III and IV, for the two algorithms that can
generate both periodic and nonperiodic distributions, there does not
appear to be a significant difference in the sampling times for the
two boundary conditions.

Figure 12 shows statistics of our Poisson-disk sampling algorithm
in two, three, and four dimensions that were obtained by gradually
decreasing the distribution radius, starting from the value r = 0.1.
The running time of the sampling algorithm is shown in Figure 12(a),
the number of generated samples for each value of r is shown in
Figure 12(b), and the average sampling rate (sample insertions per
second) is shown in Figure 12(c). For each dimension, the statistics
are obtained down to a minimum value of r for which the subdivision
tree still fits in the 4Gb of memory of the machine used in the tests.
Samplings for radii smaller than this minimum value are possible but
the timings will increase significantly due to memory page faults.
The minimum radii were found to be approximately r = 0.00014
for n = 2 dimensions, r = 0.0075 for n = 3 dimensions, and
r = 0.0685 for n = 4 dimensions. The statistics for the Poisson-disk
sampling algorithm running with periodic boundary conditions were
found to be essentially similar to the graphs shown in Figure 12.
The most notable difference is that a smaller number of samples is
generated for every value of r . This difference is only visible in the
graphs for small radii when the boundary effect is more pronounced.

Figure 13(a) shows an estimate of the average power spectrum
for two-dimensional Poisson-disk sampling, obtained by averaging
100 independent runs of our algorithm for the case r = 0.005. Pe-
riodic boundary conditions were used so that the discrete Fourier
transform naturally becomes a discrete Fourier series without con-
cerns for boundary effects. Figures 13(b) and 13(c) show the ra-
dial power spectrum and the anisotropy, respectively. The curves
for radial power and anisotropy fit well with the reference curves
for two-dimensional Poisson-disk sampling that were obtained by
Lagae and Dutré [2008]. The radial power and anisotropy spectra
were numerically computed using standard techniques that integrate
the average power spectrum inside successive concentric annuli in
the frequency domain [Ulichney 1988; McCool and Fiume 1992].
In Appendix A, it is demonstrated that our sampling algorithm gen-
erates correct Poisson-disk distributions. The spectra of Figure 13,
therefore, are true representations of a blue noise process apart from
the noise caused by averaging a relatively small number of sampling

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:13

10
−4

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Distribution Radius

S
a
m

p
lin

g
 T

im
e
 (

s
)

2D
3D
4D

(a) total computation time

10
−4

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Distribution Radius

N
u
m

b
e
r

o
f

S
a
m

p
le

s

2D
3D
4D

(b) number of samples

10
−4

10
−3

10
−2

10
−1

10
1

10
2

10
3

10
4

10
5

10
6

Distribution Radius

S
a
m

p
le

s
 p

e
r

s
e
c
o
n
d

2D
3D
4D

(c) samples per second

Fig. 12. Statistics for the Poisson-disk sampling algorithm in two, three, and four dimensions. The distribution radius in all graphs decreases from left to right
along the horizontal axis to illustrate that complexity is larger for smaller radii.

(a) two-dimensional spectrum

0 50 100 150 200 250 300
25

30

35

40

45

Frequency (1/px)

R
a
d
ia

l
P

o
w

e
r

(d
B

)

(b) radial power

0 50 100 150 200 250 300
−25

−20

−15

−10

−5

0

5

10

Frequency (1/px)
A

n
is

o
tr

o
p
y
 (

d
B

)

(c) anisotropy

Fig. 13. The average power spectrum for two-dimensional Poisson-disk sampling with r = 0.005, the radial power spectrum, and the anisotropy spectrum.
The radial power and anisotropy spectra were computed from the 2D spectrum.

runs. Spectra for three and four dimensions were not estimated since
they are a priori guaranteed to be similar to the ones shown in
Figure 13.

For the Generate algorithm of Figure 8, we employ a maximum
subdivision level lMAX = 24, which corresponds to the 24 bits of
precision (including the implicit lead bit) of a single precision float-
ing point number. This means that we are able to represent sample
positions accurately within even the smallest of tree nodes with sin-
gle precision floating point coordinates. The hypervolume of any
node in the subdivision tree is stored as a 32n-bit fixed point num-
ber, for n dimensions, thereby eliminating any round-off that might
occur when the hypervolumes are decremented due to pruning. The
presence of floating point round-off error could lead to an incorrect
decision not to remove a node from the tree due to the less-than test
between δ and the node’s hypervolume in theGenerate andUpdate
algorithms of Figures 8 and 10, respectively. The size of any empty
space left after the maximum subdivision level has been reached is
bounded by 0 < ε < 2−lMAX

√
n (refer to the discussion concerning

Eq. (3)). In two dimensions, for example, we have ε < 4.2 × 10−8.
It was verified experimentally that no empty space was found in
the generated distributions for n = 2. In three and four dimensions,
only a very small number of leaf nodes at the maximum subdivision
level were left unresolved at the completion of the algorithm with
the possibility that some empty space may have been contained in-
side of them. As Figure 7 illustrates, a leaf node left unresolved at
the maximum subdivision level when the algorithm completes does
not necessarily contain empty space where new samples could be

placed. A maximum subdivision leaf node is left unresolved when it
cannot be categorized as fully inside one of the distribution samples
or fully outside of every distribution sample.

Figure 14 shows the result of performing 50 steps of Voronoi
relaxation on a two-dimensional distribution, generated with our
algorithm, with parameter r = 0.0025. Only part of the sampling
domain is shown for increased clarity. Voronoi relaxation creates a
more regular distribution of samples but may cause the conditions
for correct Poisson-disk sampling to be violated. To study the regu-
larity of a Poisson-disk distribution, we measured all the distances
rij between the i th and the j th neighbor samples. The condition
rij ∈ [2r, 4r) must hold for a collection of samples that is a valid
Poisson-disk distribution with radius r and that is also maximal. The
lower bound is a restatement of the minimum distance constraint for
Poisson-disk samples. The upper bound must not be larger than or
equal to 4r , otherwise it would be possible to insert a new sample
in-between samples i and j and the distribution would not be max-
imal. We define the parameters rMIN = min {rij}, rMAX = max {rij}
and the relative spread σ = (rMAX − rMIN)/(2r). Table V shows
these parameters for the distribution of Figure 14 before and after
Voronoi relaxation. Before relaxation, the distribution has a nearly
maximal spread and is characterized by an irregular Voronoi de-
composition with Voronoi cells of several different sizes. Voronoi
relaxation minimized the spread in the distribution but also caused
at least a pair of samples to have a distance rij < 2r , as can be seen in
Table V. There is a global minimum σr = 0% that corresponds to a
deterministic hexagonal packing but which is very rarely achieved.

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:14 • M. N. Gamito and S. C. Maddock

(a) before

(b) after

Fig. 14. A Voronoi decomposition of a distribution generated by our algo-
rithm before and after Voronoi relaxation.

Table V. Minimum Distance rMIN, Maximum Distance
rMAX and Relative Spread σr for a Two-Dimensional

Poisson-Disk Distribution with r = 0.0025
rMIN rMAX σr

Before relaxation 0.0050000 0.0099887 99.77%
After relaxation 0.0049132 0.0089410 80.56%

The relaxation scheme, in this case, settled for a local minimum at
σr ≈ 80%, leading to a more even distribution of the samples.

If we consider the distances dij between the i th Poisson-disk sam-
ple and the j th vertex of its corresponding Voronoi cell, it is possible
to show that the distribution of such distances must be in the range
dij ∈ [2r/

√
3, 2r]. Table VI shows the minimum and maximum val-

ues of dij for the distribution of Figure 14, together with the relative
spread σd = (dMAX − dMIN)/(2r (1 − 1/

√
3)). The results are within

the correct range of approximately [0.0028867, 0.005] both before
and after Voronoi relaxation. The reduction in the spread σd is quite
significant when compared with the reduction of σr and corresponds
to the very even distribution of Voronoi cells in Figure 14(b).

Table VI. Minimum Distance dMIN, Maximum Distance
dMAX and Relative Spread σd for a Two-Dimensional

Poisson-Disk Distribution with r = 0.0025
dMIN dMAX σd

Before relaxation 0.0028869 0.0049999 99.98%
After relaxation 0.0033356 0.0045219 56.14%

Figure 15 illustrates the use of a four-dimensional Poisson-disk
distribution. It shows a sphere hypertextured with a blobby model
where each blob is centered on a Poisson-disk sample. The hy-
pertexture is animated by sweeping a unit cube through the unit
four-dimensional hypercube. The use of Poisson-disk sampling en-
sures that all blobs are conveniently spaced apart in both space and
time while still allowing the blobs to blend along the boundaries
of their respective Poisson-hyperspheres. Periodic boundary condi-
tions were enforced so that the resulting animation can be cycled.

6. CONCLUSIONS AND FUTURE
DEVELOPMENTS

We have presented an algorithm for generating Poisson-disk sample
distributions in n-dimensional space. The samples are generated in-
side the canonical domain D = [0, 1]n , which can be subsequently
modified by the application of any Euclidean transform without
changing the Poisson-disk nature of the distribution. The algorithm
generates correct Poisson-disk distributions with the samples be-
ing uniformly distributed in D and with the distance between every
pair of samples being equal to or greater than a specified distance
2r , where r is the distribution radius. The algorithm also gener-
ates maximal distributions, in the sense that no new samples can
be further inserted in D without violating the minimum distance
constraint relative to other samples. Exceptions occur when there is
a point x ∈ D that is at an almost equal distance of 2r to three or
more samples. Depending on the maximum subdivision level of the
tree, the algorithm may fail to place an additional valid sample at x.
The maximum subdivision level used in our implementation is large
enough for these exceptions to occur very rarely. In the worst case,
if x is at a distance of exactly 2r to three or more samples, the algo-
rithm will fail to place a sample at x irrespective of the maximum
subdivision level.

We have shown that the algorithm is computationally efficient
owing to the use of a subdivision tree that tracks the diminishing
subset of D where new samples can be inserted. In principle, the
algorithm can be applied to any number n of dimensions due to
the ease with which the tree can be expressed in any n-dimensional
space. All the procedures that were given in pseudocode and which
form part of the algorithm are independent of the number of dimen-
sions, leading to a code implementation that does not require the
handling of special cases for particular values of n. The subdivision
tree, however, can be memory intensive and this imposes restrictions
on how large n and how small r can be. We have also introduced
a simple technique to generate Poisson-disk distributions that are
maximal and have a number of samples approximately equal to a
desired number N .

We have successfully demonstrated our algorithm in two, three,
and four dimensions since these are the dimensions more com-
monly used when generating Poisson-disk distributions for com-
puter graphics applications. Our algorithm can also be applied to
many other fields in cases where high-dimensional integrals need
to be computed and where Poisson-disk sampling can be applied as
part of a variance reduction technique for Monte Carlo integration.

There are several possible ways by which the proposed sampling
algorithm can be improved and we mention a few here. Sampling can

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:15

Fig. 15. Three snapshots from an animation showing a sphere hypertextured with a time-varying blobby model. The centeres of the blobs are Poisson-disk
samples distributed inside a four-dimensional hypercube.

be done inside domains with irregular boundaries and not just inside
a hypercube. Subdivision must be performed for tree nodes that
straddle the boundary of the domain, together with the subdivision
that already occurs for nodes that intersect sample hyperspheres.
This strategy is likely to be more efficient than simply generating
samples inside a hypercube that contains the domain and rejecting
those samples that fall outside the boundary of the domain.

The Poisson-disk sampling algorithm can be extended to spherical
surfaces. The subdivision takes place in a 2-dimensional parameter
space of spherical coordinates. Distances between samples must be
computed along geodesic lines, which, in the case of a sphere, is
done trivially. The intersection routine will have to be modified to
compute the intersection between a spherical disk and the spherical
sector that corresponds to a given square node in parameter space.
Random traversal of the subdivision tree must also take into account
the areas of the spherical sectors generated by the tree nodes so that
a uniform sampling on the sphere is achieved. Random sample in-
sertion inside the parameter space of a tree node must obey a specific
probability density function that transforms into a uniform proba-
bility density when the node is mapped onto the sphere. Periodic
boundary conditions are imposed on the longitudinal boundary of
the parameter space. Extensions to other types of parametric man-
ifolds may also be possible although the computation of geodesic
distances becomes more involved.

The proposed algorithm can be parallelized on multicore proces-
sors or on multiprocessor machines. The parallelization is achieved
by having several independent threads performing tree traversal and
sampling insertion simultaneously. Some careful synchronization
among the threads is necessary to ensure that the tree data structure
remains consistent. For example, if a thread prunes a section of the
tree after inserting a new sample, other threads that are working in-
side the same tree section need to be notified so that they can abort
and proceed to a new tree traversal. If a subdivision tree is suffi-
ciently deep, the interference between different threads should be
minimal. Parallelization on a GPU, as in Wei [2008], does not seem
possible, unfortunately, since GPUs lack synchronization mecha-
nisms between the hardware shaders.

APPENDIXES

A. STATISTICAL PROPERTIES OF
DART-THROWING ALGORITHMS

Dart-throwing algorithms can be formalized as a sequential sam-
pling process that places a set of N samples {x1, x1, . . . , xN } in a
unit hypercube domain D = [0, 1]n in n dimensions. After i < N

samples have been placed, a possibly disjoint allowable set Si ⊆ D
can be defined where the next sample xi+1 has to be placed. The
allowable set is given by

Si = {x ∈ [0, 1]n : ‖x − x j‖ � 2r, j = 1, 2, . . . , i}. (A.1)

The set Si represents the portion of the unit hypercube that is
not covered by the union of hyperspheres of radius 2r centered
on the samples x1 to xi that have already been placed. It is repre-
sented in green in Figure 16. Once Si has been defined with (A.1),
Poisson-disk sampling dictates that the next sample xi+1 must be
placed within Si with a uniform probability density. This means
that for any subset s ⊂ Si , the conditional probability that xi+1 is
placed in s, knowing that xi+1 ∈ Si , is given by

P(xi+1 ∈ s | xi+1 ∈ Si) = a/Ai , (A.2)

where a and Ai are the hypervolumes of the sets s and Si , respec-
tively. We have that Ai < 1, except for A0 = 1, which is the
hypervolume of the unit hypercube: the allowable set S0 = [0, 1]n

at the time when the first sample x1 is placed. This iterative formula-
tion of the Poisson-disk process was first presented by Diggle et al.
[1976], who called it simple sequential inhibition.

An example of a subset s is shown in orange in Figure 16. After
sample xi+1 has been inserted, the next allowable set Si+1 ⊂ Si (with
Ai+1 < Ai) can be defined similarly to (A.1) and the procedure can
be iterated until a maximum number N of samples has been reached
for which SN = ∅ (and AN = 0). With SN being the empty set,
no more samples can be inserted and the distribution is said to be
maximal. The end result is a uniform distribution of N samples in
the unit hypercube where the distance between any pair of samples
is never smaller than 2r , with r being called the distribution radius.

A.1 Naı̈ve Dart-Throwing

The naı̈ve dart-throwing algorithm of Dippé and Wold [1985] was
the first algorithm to accurately generate Poisson-disk distributions
and is the benchmark against which all other Poisson-disk sampling
algorithms are compared in terms of sampling quality. Dart throw-
ing applies a principle of rejection sampling in order to generate
a sample xi+1 within an arbitrarily complex set Si with uniform
probability density. Samples are repeatedly generated within the
unit hypercube and rejected if they are found to be outside of Si .
The first sample that is found to be inside of Si becomes the next
sample xi+1 in the distribution. The conditional probability of xi+1

being inside any subset s, knowing that it has been accepted in the

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:16 • M. N. Gamito and S. C. Maddock

Fig. 16. The allowable set S9, shown in green, after samples x1, . . . , x9

have been inserted. The next sample x10 must be inserted in this set. The set
s, shown in orange, is an arbitrary subset of S9.

distribution, is

P(xi+1 ∈ s | xi+1 ∈ Si) = P(xi+1 ∈ s ∩ xi+1 ∈ Si)

P(xi+1 ∈ Si)
. (A.3)

Because s ⊂ Si , we have that P(xi+1 ∈ s∩xi+1 ∈ Si) = P(xi+1 ∈
s) and we obtain, as desired,

P(xi+1 ∈ s | xi+1 ∈ Si) = P(xi+1 ∈ s)

P(xi+1 ∈ Si)
= a

Ai
. (A.4)

The main problem with naı̈ve dart-throwing is the number of
attempts that need to be taken before a sample can be accepted in
the distribution. The probability of a sample being accepted is Ai
and, correspondingly, the probability of it being rejected is 1 − Ai .
The probability of sample xi+1 being accepted after k > 0 attempts
obeys a discrete geometric distribution, with the expression

Pk = Ai (1 − Ai)
k−1. (A.5)

As required,
∑

Pk = 1 when 0 < Ai � 1, meaning that sample
xi+1 will inevitably be accepted at some point as long as there is a
nonzero hypervolume Ai where it can land. The expected number
of attempts before the sample can be accepted is given by

E[k] =
∞∑

k=1

k Pk = Ai

∞∑
k=1

k(1 − Ai)
k−1 = 1/Ai . (A.6)

So, as the sampling progresses and the allowable sets Si shrink in
size, the hypervolumes Ai converge to zero and, correspondingly,
the expected number of attempts before accepting a sample goes
to infinity. Naı̈ve dart-throwing becomes progressively less efficient
the more the hypercube becomes filled with samples. It may take an
inordinately large amount of time for dart-throwing to terminate if
a maximal Poisson-disk distribution is desired.

A.2 Parallel Dart-Throwing

We discuss here the parallel dart-throwing algorithm of Wei [2008]
as it is currently the most advanced Poisson-disk sampling algo-
rithm, capable of running in parallel on a GPU. The unit hypercube

Fig. 17. The allowable set S9 is split into four smaller subsets S9,1 to S9,4,
shown in green, as a result of domain subdivision. The set s, shown in orange,
is an arbitrary subset of S9,2.

domain is progressively subdivided into increasing resolution lev-
els. For each resolution level, the cells are separated in a clever way
into distinct groups so that cells in the same group can be sampled
in parallel without the risk of conflict between samples. Sampling
inside a cell is done by performing k dart-throwing attempts. A sam-
ple will not be inserted in the cell if all k attempts fail. Once all cells
in a group have been sampled, the algorithm moves on to the next
group at the same resolution level.

Figure 17 shows an example where the domain has been decom-
posed into a 2 × 2 resolution level. At this shallow level there are
four groups of cells where each group has only one cell in it. For
each resolution level, a fixed scanning order is used to visit all the
groups. In this example, we consider the case that Si,1 is sampled
first, followed by Si,2. The conditional probability that the sample
xi+1 is placed in s, knowing that it is a valid sample, is given by the
probability that all k dart-throwing attempts in Si,1 have failed mul-
tiplied by the probability that a sample uniformly generated inside
Si,2 will lie in the set s.

P(xi+1 ∈ s | xi+1 ∈ Si) = (1 − 4Ai,1)k a
Ai,2

(A.7)

The factors Ai, j are the hypervolumes of their respective sets Si, j .
The probability (A.7) is not the same as (A.2). The asymmetry ex-
pressed in (A.7) exists for any resolution level. The fixed scanning
order that is used to loop over all cell groups within a level means
that the sampling within a group will depend on the sampling done
in the previous groups. Nevertheless, Wei [2008] has shown that
sample distributions obtained with the parallel sampling algorithm
have good blue noise properties. This is likely because the sam-
pling asymmetry is smeared out over successive resolution levels.
Different scanning orders are used for different levels. At the resolu-
tion level that follows the one shown in Figure 17, for example, the
scanning might proceed from right to left instead of the left-to-right
order that was used before.

The smearing of the asymmetry expressed in (A.7) works better
if a large number of resolution levels is used. Such a number is
determined by the distribution radius so that the lateral size of cells
at the highest resolution level must be smaller than 2r/

√
n. The

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:17

Fig. 18. The allowable set S9, shown in green, after five steps of recursive
subdivision. Nodes that fall outside of S9 are discarded. The set s, shown in
orange, is an arbitrary subset of S9. S9, j0 is the candidate node where the set
s is contained.

number of resolution levels is then equal to �log2

√
n/r�. If r is

large, the number of resolution levels is small and artifacts due to
sampling asymmetry may arise more easily. As r decreases, more
resolution levels are introduced and the quality of the distribution
improves.

A.3 Dart-Throwing by Subdivision Refinement

Our algorithm relies on a recursive subdivision of the unit hyper-
cube. Nodes that fall outside of Si are discarded and the subdivision
tree keeps those nodes that are either inside of Si or that straddle the
boundary of that set. One of the leaf nodes Si, j , with j = 1, . . . , L ,
is randomly chosen for sample placement. In order to ensure that
sample placement has a uniform density probability in Si , the prob-
ability of choosing a particular leaf node Si, j is proportional to its
hypervolume Ai, j . Figure 18 shows a situation where the arbitrary
set s is inside a candidate node Si, j0 in the subdivision tree. The con-
ditional probability of the sample xi+1 being inside s, knowing that
it is a valid sample, is equal to the probability of choosing Si, j0 mul-
tiplied by the probability that a sample uniformly generated inside
Si, j0 will lie in the set s.

P(xi+1 ∈ s | xi+1 ∈ Si) = Ai, j0∑L
j=1 Ai, j

a
Ai, j0

=

= a∑L
j=1 Ai, j

(A.8)

Our algorithm employs a lazy subdivision strategy. Rather than
subdividing all of the tree before performing sample placement, the
nodes are subdivided as part of the top-down random traversal of
the tree if they are found to straddle the boundary. The end result is
the same as if the tree had been subdivided in advance. In the limit
of an infinite number of subdivisions, we have

P(xi+1 ∈ s | xi+1 ∈ Si) = a∑∞
j=1 Ai, j

= a
Ai

, (A.9)

which is the same as (A.2). If, however, Si, j0 is a potential candidate
node instead of a candidate node (meaning that some part of it

is outside Si), the probability of placing a valid sample in s then
becomes

P(xi+1 ∈ s | xi+1 ∈ Si) = Ai, j0∑L
j=1 Ai, j

a
Ai, j0 − ai, j0

=

= a∑L
j=1 Ai, j

1

1 − ai, j0/Ai, j0

, (A.10)

where ai, j0 < Ai, j0 is the hypervolume of the part of Si, j0 that is
outside of the valid set Si . As subdivision progresses, the shape of
the node Si, j0 tracks the boundary of Si with increasing accuracy. In
particular, the descendant nodes of Si, j0 that are completely outside
of Si are discarded so that the outside hypervolume ai, j0 gradually
converges to zero. In the limit we then have, therefore, the same
result of Eq. (A.9).

From a theoretical standpoint, our algorithm performs correct
Poisson-disk sampling for an infinitely subdivided tree. In reality,
we impose a maximum subdivision level of 24, which is deep enough
to guarantee correct Poisson-disk distributions for all practical pur-
poses. The probability (A.9) was obtained in the simple case where
the arbitrary set s falls completely inside one of the leaf nodes in the
tree. If that is not the case, the same result as (A.9) can be obtained
except that the derivation is a bit more complex. One will have to
consider the disjoint union of all fragments of s that fall in different
leaf nodes.

B. INTERSECTION TESTING BETWEEN A
HYPERSPHERE AND A HYPERCUBE

Arvo [1990] presented three Boolean methods for testing the inter-
section between a hypersphere and a hypercube in n dimensions,
depending on whether the hypersphere and the hypercube should
be treated as surfaces or as solidss. Recently, Larsson et al. [2007]
improved on the solid-solid intersection method of Arvo [1990] by
providing early exits from the routine as soon as a decision about
the intersection state can be made. Rather than a Boolean test, we
need an intersection test for our Poisson-disk sampling method that
returns one of three possible outcomes for the state of the hypercube
relative to the hypersphere:

In: The hypercube is entirely contained inside the hypersphere.

Out: The hypercube is located entirely on the outside of the hy-
persphere.

Over: The hypercube either intersects with or contains the hyper-
sphere.

A hypersphere in R
n is defined by a center c = (c1, c2, . . . , cn)

and a radius 2r . A hypercube is defined by the Cartesian product of
the intervals T = [t1MIN , t1MAX]× [t2MIN , t2MAX]×· · ·× [tnMIN , tnMAX].
The intersection status between the two objects can be determined
by computing the minimum and maximum distances from c to all
points x ∈ T . We have

dMIN(c) � min
x∈T

(d(x, c)) (B.1)

dMAX(c) � max
x∈T

(d(x, c)), (B.2)

where d(x1, x2) is the standard Euclidean distance in R
n between

points x1 and x2. The minimum and maximum distances are

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

8:18 • M. N. Gamito and S. C. Maddock

let d2
MIN = 0;

let d2
MAX = 0;

for i = 1, 2,. . . ,n
let diMIN = tiMIN − ci;

if diMIN > 0

if diMIN > 2r return Out;

let d2
MIN += d2

iMIN
;

if d2
MIN > 4r2 return Out;

let d2
MAX += (tiMAX − ci)

2;

continue

let diMIN = ci − tiMAX ;

if diMIN > 0

if diMIN > 2r return Out;

let d2
MIN += d2

iMIN
;

if d2
MIN > 4r2 return Out;

let d2
MAX += (ci − tiMIN)2;

continue

let d2
MAX += max2 (ci − tiMIN ↪ tiMAX − ci);

if d2
MAX > 4r2 return Over else return In;

Fig. 19. Pseudocode for the intersection test between a hypercube and a
hypersphere in n dimensions.

computed with

dMIN(c) =
√

n∑
i=1

d2
iMIN

(ci) (B.3)

dMAX(c) =
√

n∑
i=1

d2
iMAX

(ci), (B.4)

where diMIN (ci) = minx∈[tiMIN ,tiMAX] (x − ci) and similarly for
diMAX (ci). The outcome of the intersection test is determined from
the distances dMIN(c) and dMAX(c) according to the following inequal-
ities.

In: dMAX(c) < 2r
Out: dMIN(c) > 2r
Over: dMIN(c) � 2r � dMAX(c)

Following common practice, we compare the squares of the dis-
tances with the square 4r 2 of the radius to avoid having to compute
the square roots in Eq. (B.3). Figure 19 shows the pseudocode for our
intersection test. We iterate over all the dimensions i = 1, 2, . . . n
while accumulating the values of the minimum and maximum dis-
tances. Similar to Larsson et al. [2007], we also provide early exits
whenever possible. Specifically, if it is found that

∑i
j=1 d2

jMIN
(c j) >

4r 2 for some i < n, then it is known that d2
MIN(c) > 4r 2 and a return

code of Out can be issued without having to wait for the remaining
iterations to complete. The same reasoning applies if d jMIN (c j) > 2r
for any j . The variables 2r and 4r 2 are static and can be initialized
at the start of the algorithm.

The intersection test is where our Poisson-disk sampling algo-
rithm spends most of its time and the efficiency of this test is critical
to determine the efficiency of the whole algorithm. The pseudocode
of Figure 19 has plenty of branching conditions to prevent float-
ing point operations from being carried out unless they are strictly

necessary. For processors that have SIMD instruction sets, it may
be preferable instead to compute the diMIN (ci) and diMAX (ci) factors
for several dimensions in parallel with the help of vectorized reg-
isters and avoiding the branching conditions. The reader is referred
to Larsson et al. [2007] for a SIMD computation of dMIN(c) as part
of their intersection test. With a little extra work, it is possible to do
the same for the distance dMAX(c) and have a SIMD implementation
of our intersection test. Current SIMD hardware allows for the com-
putation of intersections in single precision up to dimension n = 4,
which corresponds to the maximum dimension used in this article.

ACKNOWLEDGMENTS

We would like to thank our anonymous reviewers whose suggestions
helped to improve this article.

REFERENCES

ARVO, J. 1990. A simple method for box-sphere intersection testing. In
Graphics Gems, A. S. Glassner, Ed. Academic Press Professional, San
Diego, CA, 335–339.

BADDELEY, A. AND MøLLER, J. 1989. Nearest-Neighbour Markov point
processes and random sets. Int. Statist. Rev. 57, 2, 89–121.

BARTLETT, M. S. 1974. The statistical analysis of spatial pattern. Adv.
App. Probab. 6, 2, 336–358.

BRIDSON, R. 2007. Fast Poisson disk sampling in arbitrary dimensions.
In ACM SIGGRAPH’07 Sketches and Applications. ACM Press, 22.

CLINE, D., JESCHKE, S., WHITE, K., RAZDAN, A., AND WONKA, P. 2009.
Dart throwing on surfaces. Comput. Graph. Forum 28, 4, 1217–1226.

COHEN, M. F., SHADE, J., HILLER, S., AND DEUSSEN, O. 2003. Wang tiles
for image and texture generation. ACM Trans. Graph. 22, 3, 287–294.

COOK, R. L. 1986. Stochastic sampling in computer graphics. ACM
Trans. Graph. 5, 1, 51–72.

DEUSSEN, O., HANRAHAN, P., LINTERMANN, B., MECH, R., PHARR, M.,
AND PRUSINKIEWICZ, P. 1998. Realistic modelling and rendering of
plant ecosystems. In Proceedings of the SIGGRAPH’98 Conference, M.
Cohen, Ed. Vol. 22. ACM Press, 275–286.

DEUSSEN, O., HILLER, S., VAN OVERVELD, C., AND STROTHOTTE, T. 2000.
Floating points: A method for computing stipple drawings. Comput.
Graph. Forum 19, 3, 40–51.

DICKMAN, R., WANG, J.-S., AND JENSEN, I. 1991. Random sequential
adsorption: Series and virial expansions. J. Chem. Phy. 94, 12, 8252–8257.

DIGGLE, P. J., BESAG, J., AND GLEAVES, J. T. 1976. Statistical analysis
of spatial point patterns by means of distance methods. Biometrics 32, 3,
659–667.

DIPPÉ, M. A. Z. AND WOLD, E. H. 1985. Antialiasing through stochastic
sampling. In Proceedings of the SIGGRAPH’85 Conference, B. A. Barsky,
Ed. Vol. 19, 69–78.

DONEV, A., TORQUATO, S., AND STILLINGER, F. H. 2005. Neighbor
list collision-driven molecular dynamics simulation for nonspherical hard
particles. I. Algorithmic details. J. Comput. Phys. 202, 2, 737–764.

DUNBAR, D. AND HUMPHREYS, G. 2006. A spatial data structure for fast
Poisson-disk sample generation. ACM Trans. Graph. 25, 3, 503–508.

DUTRÉ, P., BALA, K., AND BEKAERT, P. 2006. Advanced Global Illumi-
nation, 2nd Ed. AK Peters Ltd, Wellesley, MA.

FENG, L., HOTZ, I., HAMMAN, B., AND JOY, K. I. 2008. Anisotropic noise
samples. IEEE Trans. Visualiz. Comput. Graph. 14, 2, 342–354.

FU, Y. AND ZHOU, B. 2008. Direct sampling on surfaces for high quality
remeshing. In Proceedings of the ACM Symposium on Solid and Physical
Modeling, E. Haines and M. McGuire, Eds. ACM Press, 115–124.

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

Accurate Multidimensional Poisson-Disk Sampling • 8:19

GLASSNER, A. S. 1995. Principles of Digital Image Synthesis. The Mor-
gan Kaufmann Series in Computer Graphics. Morgan Kaufmann Publish-
ers, San Francisco, CA.

HACHISUKA, T., JAROSZ, W., WEISTROFFER, R. P., DALE, K., HUMPHREYS,
G., ZWICKER, M., AND JENSEN, H. W. 2008. Multi-Dimensional adap-
tive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3,
33:1–33:10.

HILLER, S., DEUSSEN, O., AND KELLER, A. 2001. Tiled blue noise sam-
ples. In Vision, Modeling and Visualization 2001, B. Girod, G. Greiner,
H. Niemann, and H.-P. Seidel, Eds. Akademische Verlagsgesellschaft Aka
GmbH, Berlin, 256–272.

JAEGER, H. M. AND NAGEL, S. R. 1992. Physics of the granular state.
Sci. 255, 5051, 1523–1531.

JONES, T. R. 2006. Efficient generation of Poisson-disk sampling pat-
terns. J. Graph. Tools 11, 2, 27–36.

KOPF, J., COHEN-OR, D., DEUSSEN, O., AND LICHINSKY, D. 2006. Re-
cursive Wang tiles for real-time blue noise. ACM Trans. Graph. 25, 3,
509–518.

LAGAE, A. AND DUTRÉ, P. 2005. A procedural object distribution func-
tion. ACM Trans. Graph. 24, 4, 1442–1461.

LAGAE, A. AND DUTRÉ, P. 2006a. An alternative for Wang tiles:
Colored edges versus colored corners. ACM Trans. Graph. 25, 4, 1442–
1459.

LAGAE, A. AND DUTRÉ, P. 2006b. Poisson sphere distributions. In
Vision, Modeling and Visualization 2006, L. Kobbelt, T. Kuhlen, T. Aach,
and R. Westermann, Eds. Akademische Verlagsgesellschaft Aka GmbH,
Berlin, 373–379.

LAGAE, A. AND DUTRÉ, P. 2008. A comparison of methods for generating
Poisson disk distributions. Comput. Graph. Forum 27, 1, 114–129.

LARSSON, T., AKENINE-MÖLLER, T., AND LENGYEL, E. 2007. On faster
sphere-box overlap testing. J. Graph. Tools 12, 1, 3–8.

LEHTINEN, J., ZWICKER, M., TURQUIN, E., KONTKANEN, J., DURAND, F.,
SILLION, F. X., AND AILA, T. 2008. A meshless hierarchical represen-
tation for light transport. ACM Trans. Graph. 27, 3, 37.

LENEMAN, O. A. Z. 1966. Random sampling of random processes: Im-
pulse processes. Inf. Control 9, 4, 347–363.

LEWIS, J.-P. 1989. Algorithms for solid noise synthesis. In Proceedings
of the SIGGRAPH’89 Conference, J. Lane, Ed. Vol. 23. ACM Press, 263–
270.

LI, H., LO, K.-Y., LEUNG, M.-K., AND FU, C.-W. 2008. Dual Poisson-disk
tiling: An efficient method for distributing features on arbitrary surfaces.
IEEE Trans. Visualiz. Comput. Graph. 14, 5, 982–998.

LLOYD, S. P. 1982. Least squares quantization in PCM. IEEE Trans. Inf.
Theory 28, 2, 129–137.

LUBACHEVSKY, B. D. AND STILLINGER, F. H. 1990. Geometric proper-
ties of random disk packings. J. Statist. Phys. 60, 5-6, 561–583.

LUBACHEVSKY, B. D., STILLINGER, F. H., AND PINSON, E. N. 1991.
Disks vs. spheres: Contrasting properties of random packings. J. Statist.
Phys. 64, 3-4, 501–524.

MATÉRN, B. 1960. Spatial variation. Meddelanden från Statens Skogs-
forskningsinstitut 49, 1–144.

MCCOOL, M. AND FIUME, E. 1992. Hierarchical Poisson disk sampling
distributions. In Proceedings of Graphics Interface’92. Canadian Infor-
mation Processing Society, 94–105.

MITCHELL, D. P. 1987. Generating antialiased images at low sampling
densities. In Proceedings of the SIGGRAPH’87 Conference, M. C. Stone,
Ed. Annual Conference Series, vol. 21. ACM Press, 65–72.

MITCHELL, D. P. 1991. Spectrally optimal sampling for distribution
ray tracing. In Proceedings of the SIGGRAPH’91 Conference, T. W.
Sederberg, Ed. Vol. 25. ACM Press, 157–164.

OSTROMOUKHOV, V. 2007a. Building 2D low-discrepancy sequences for
hierarchical importance sampling using dodecagonal aperiodic tiling. In
Proceedings of GraphiCon’07. 139–142.

OSTROMOUKHOV, V. 2007b. Sampling with polyominoes. ACM Trans.
Graph. 26, 3, 78.

OSTROMOUKHOV, V., DONOHUE, C., AND JODOIN, P.-M. 2004. Fast hi-
erarchical importance sampling with blue noise properties. ACM Trans.
Graph. 23, 3, 488–495.

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T., AND FLANNERY, B. P.
1992. Numerical Recipes in C: The Art of Scientific Computing 2nd Ed.
Cambridge University Press.

RIPLEY, B. D. 1977. Modelling spatial patterns. J. Royal Statist. Soc.
Series B 39, 172–212.

SAMET, H. 1990. The Design and Analysis of Spatial Data Structures.
Addison-Wesley, Reading, MA.

SECORD, A., HEIDRICH, W., AND STREIT, L. 2002. Fast primitive distri-
bution for illustration. In Proceedings of the 13th Eurographics Workshop
on Rendering Techniques, S. Gibson and P. Debevec, Eds. Eurographics
Association, 215–226.

SHIRLEY, P. 1992. Nonuniform random point sets via warping. In
Graphics Gems III, D. Kirk, Ed. Academic Press, San Diego, CA, 80–
83.

SKOGE, M., DONEV, A., STILLINGER, F. H., AND TORQUATO, S. 2006.
Packing hyperspheres in high-dimensional Euclidean spaces. Phys. Rev.
E 74, 4, 041127.

SNYDER, D. L. 1991. Random Point Processes in Time and Space, 2nd
Ed. Springer-Verlag, Berlin.

ULICHNEY, R. A. 1988. Dithering with blue noise. Proc. IEEE 76, 1,
56–79.

WEI, L.-Y. 2008. Parallel poisson disk sampling. ACM Trans.
Graphi. 27, 3, 20.

WEISSTEIN, E. W. Hypersphere packing. From MathWorld—A Wolfram
Web Resource.

WHITE, K. B., CLINE, D., AND EGBERT, P. K. 2007. Poisson disk
point sets by hierarchical dart throwing. In Proceedings of the
IEEE/Eurographics Symposium on Interactive Ray Tracing, A. Keller and
P. Christensen, Eds. IEEE Press, 129–132.

WORLEY, S. P. 1996. A cellular texture basis function. In Proceedings of
the SIGGRAPH’96 Conference, H. Rushmeier, Ed. Vol. 30. ACM Press,
291–294.

YELLOT, JR, J. I. 1983. Spectral consequences of photoreceptor sam-
pling in the rhesus retina. Sci. 221, 382–395.

Received August 2007; revised August 2009; accepted September 2009

ACM Transactions on Graphics, Vol. 29, No. 1, Article 8, Publication date: December 2009.

